Tag Archives: Carol Baskin

Reclamation, restoration and mountaintop removal

My first taste of reclamation came as a grad student while on a fieldtrip along Colorado’s “Uranium Highway.” We stopped in the ghost town of Uravan, a former Uranium/Vanadium boomtown. And except for a couple buildings, everything had been torn down, the tailings ponds evaporated, land reclaimed or in the process of being so. It was then that I learned that reclamation and restoration were not the same thing. Above the once upon town sat tailings sites. Instead of a rust-colored desert environment,  meticulous patterns of white and black rock zig-zagged across the hilltop, laid out like some sort of interpretive landscape project.

Reclamation, I thought, was supposed to help clean up after we’d finished using the land. It was supposed to help return the land to itself. I’ve seen many reclaimed sites since that fieldtrip, and have yet to come across one that resembled nature’s design.

That’s not to say that reclamation is a lost cause or a sham, just that it can be better. Now scientists are trying to help make that happen with arguably one of the most destructive and controversial mining practices at work today, mountaintop removal. Sarah Hall, of Kentucky State University,  and her colleagues Christopher Barton and Carol Baskin, of the University of Kentucky, have discovered a new method of replanting mined Appalachian sites, one that gives native landscapes a leg up at renewal. (You can find their study in the online early edition of Restoration Ecology)

Mountaintop removal reclamation projects often involve planting blasted and terraced mountainsides with non-native grasses. (Early surface mine reclamation would sometimes simply abandoned the site.) Perhaps one of the more unexpected outcomes of reclamation comes from Mingo County, W. Va., where reclamation turned a blast site into what’s now known as the Twisted Gun Golf Course.

Rather than seeding mined areas with grasses, which tend to stunt recovery of native species, Hall sought to test the possibility of replanting mountaintop removal sites with the trees and forbs kin to the forests that had existed before the mines. Hall’s idea seems in hindsight to be quite obvious. Put back the original topsoil scraped away when creating the mine. This soil she found was rich with the seeds and microbial recipe that could help re-establish forest. Where Hall and her team tried the method, the plants started to grow, including arrow-leaved asters, Virginia pines and blueberry.

The method is not enough to completely recover the forest, but it’s a start, and a step up from the grassy slopes that have come to replace so many of Appalachia’s mined mountainsides. Hall’s research highlights a two-fold lesson  – we need to recognize that reclamation is not restoration, and there are practical ways to make reclamation better. Then maybe these environments that have given us so much of their riches at least have a chance to return to themselves, even if it’s just a little.