Tag Archives: Nature Files

The lazy animals’ guide to survival

Dormouse in winter sleep

For the dormouse, life can be hard. Raising the kids takes obscene amounts of energy. Anyone’s who’s ever tried to raise one knows these little guys are divas when it comes to feeding time. So dormice only breed when the acorns are good.

To the other extreme, they’re also on a lot of menus: owls, weasels, pine martens and both wild and domestic cats all like to eat them. The poor guy is even called the “edible dormouse.”  Basically, a public life for the dormouse is nothing short of a way to punch the ticket. That’s enough stress to tucker anyone out. So how do these guys survive? By sleeping through 8 months of the year.

You can learn more new science about the dormouse from the new study by Professor Thomas Ruf thomas.ruf@fiwi.at at the University of Veterinary Medicine in Vienna or in the journal paper:

Survival rates in a small hibernator, the edible dormouse: a comparison across Europe by Karin Lebl, Claudia Bieber, Peter Adamík, Joanna Fietz, Pat Morris, Andrea Pilastro and Thomas Ruf at http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0587.2010.06691.x/abstract

Advertisements

CAT in WATER Kickstarter Launch!

Support the Kickstarter project to document them in the wild  here.

The fishing cat is up and running! We have 90 days to raise the first round of funds for the CAT in WATER expedition. Check out our Kickstarter project and watch the short video. You can also learn about all the paybacks in store for our supporters. Who wouldn’t want a care package from Thailand and the knowledge they are helping a gorgeous, wild animal in need?



Water flea: small critter, big genome

Daphnia pulex (water flea) with a brood of genetically identical future offspring.

Daphnia pulex (water flea) with a brood of genetically identical future offspring. (Photo/Paul D.N. Hebert, University of Guelph)

In an interesting science factoid of the week, researchers at the University of Guelph have just found the animal with the most genes.

Ringing in at a whopping 31,000 genes, the winner is a near-microscopic crustacean called daphnia, or water flea. In case you’re wondering, humans tally a mere 23,000, about 8,000 less than this little aquatic critter.

Daphnia‘s high gene number is largely because its genes are multiplying, by creating copies at a higher rate than other species,” said project leader and CGB genomics director John Colbourne in a press release. “We estimate a rate that is three times greater than those of other invertebrates and 30 percent greater than that of humans.”

So let that be a lesson. Just because you’re little, doesn’t mean you can’t be big at something.


iLCP RAVE Retrospective, places worth saving on Discovery’s Planet Green

Go on a virtual travel adventure for conservation with images (one of them is mine!) from the RAVE Retrospective by the International League of Conservation Photographer’s. RAVEs, or Rapid Assessment Visual Expeditions, consist of teams of professional iLCP photographers who explore a region facing imminent environmental threat to document as much of its nature, culture and environmental impacts as possible in a short amount of time, usually a few weeks at most.

The select images featured on Discovery.com’s “Planet Green” will give you the 4-1-1 on all the RAVEs that have taken place to date, including ones in Bioko, the Yucatan, Great Bear Rainforest, Canada’s Flathead wilderness and the Chesapeake Bay.

Better yet, you can check out these and other amazing photographs at the G2 Gallery in Venice, Cali., from January 4 – February 13.

iLCP RAVE list (so far!):

Bioko

Wyoming

Yucatan

Flathead

Great Bear Rainforest

Chesapeake Bay

Borderlands

El Triunfo

Balandra

Patagonia

Sacred Headwaters, British Columbia


Quick Hit: Desert bats, staving-off dehydration by the skin of their wings

The researchers found total water loss in the desert-living Pipistrellus kuhli was just 80 percent of other nondesert species. (Photo/Sahi Pilosof)

Desert-dwelling bats lose water at a slower rate than non-desert bats, a new study finds. And their secret appears to be skin deep. Researchers from the Ben-Gurion University in Israel looked at the desert bat Pipistrellus kuhli, and found that the amount of fat in the skin helped stem water loss. Animals typically lose water through evaporation from the skin or from the mouth and nose when breathing. This finding helps explain how an animal with bare wings that expends so much energy in flight can survive in such an arid environment. Researchers, lead by Dr. Muñoz-Garcia plan to look at eight other species of desert bat to see if the same holds true for them.


Cane toads heart climate change

Cane Toad, AKA Bufo marinus, AKA troublemaker extraordinaire (Photo/ Eli Greenbaum)

Cane toads like it hot, and with climate change poised to raise temps in Australia, this persistent, invasive species could soon be living it up even more.

At least that’s the word coming out of new research from the University of Sydney and presented at the Society for Experimental Biology’s annual conference in Prague.

A lot of what we hear about climate change focuses on habitat loss (cue rising sea levels) or species extinction (sorry red wolf and coral reefs), but here’s another way the pesky, poisonous cane toad can flip the amphibian bird to mankind – warmer climes mean prolific times as far as the toad is concerned.

“The negative effect of high temperature does not operate in cane toads, meaning that toads will do very well with human induced global warming,” said Professor Frank Seebacher from the University of Sydney in a press release.

Many of you reading this are probably familiar with the story of the cane toad, but here’s the quick shake down. In the mid 1930s, Australian biologists, hoping to stem the onslaught of beetles ravaging cane fields, introduced cane toads to Queensland and the Northern Territory. Unfortunately, toads passed on the beetles, instead turning their appetites towards lizards, snakes and other native wildlife. To compound factors, the toads secrete a toxic substance that can do a serious number on just about anything that tries to eat it. So the cane fields now have beetles and bucket loads of poisonous toads. Sigh.

And because of research by Seebacher, we now have a good idea that toads are going to thrive even more as temperatures rise from climate change. Warmer weather makes for stronger, or at least more efficient, heart and lungs in the cane toad, Seebacher found. And if that’s not unsettling enough, the study also states “the cane toad can adapt its physiology in response to a changing environment repeatedly and completely reversibly many times during its lifetime.”

Will nothing temper their proliferation?

Before you totally throw up your hands and say, “Why do I read this if all you’re going to tell me is bad news,” here’s a ray, or sliver, of hope. Maybe, just maybe, this phenomenon will prove true for other toads, ones we actually would like to see stick around. I’ll get back to you when Seebacher conducts that study.


Surfing crocodiles take to the high seas

A 4.8 m male estuarine crocodile ready for release with satellite transmitter. This crocodile traveled over 590 km by sea. (Courtesy/University of Queensland)

Next time you’re out sailing the high seas and think you’ve spotted a crocodile hanging ten, no need to get your eyes checked just yet. Turns out crocs do surf ocean currents, albeit sans boards and all the crazy wipeouts.

The behavior tracked by researchers out of Queensland, Australia, helps explain why the reptiles are so widespread, yet genetically similar.

Estuarine crocodiles which typically live in saltwater habitats like rivers and mangroves occupy a range covering about 10,000 km2 stretching from East India to Fiji and southern China to northern Australia, said the study. Geographic isolation tends to support the evolution of different species. But despite living in places separated by thousands of miles of open ocean, a crocodile living in Fiji is likely the same kind of croc living in Australia.

“The estuarine crocodile occurs as island populations throughout the Indian and Pacific Oceans, and because they are the only species of salt-water living crocodile to exist across this vast area, regular mixing between the island populations probably occurs,” said Hamish Campbell with the University of Queensland, and study lead in a press release.

But until now, scientists weren’t sure how. Stories have floated in over the years of ocean-bound crocodiles, even though the toothy predators are no Mark Spitz when it comes to swimming. Campbell and his colleagues from Queensland Parks and Wildlife Service and Australia Zoo set out to monitor the mobile capacity of crocs. They used acoustic and satellite tracking to follow the movements of 27 adult crocodiles over the course of a year. The crocodiles revealed an astonishing range of movement, regularly traveling 50 kilometers or more from their stomping grounds to the mouth of the river and out into the sea.

Croc’s, it seems, like to “go with the flow,” according to the researchers. Tides and currents dictate the timing and extent of a crocodile’s swim, with crocs typically beginning a swim within an hour of a changing tide, following the movement of the water, and returning to shore when water is no longer headed in the desired direction. Similar behavior applies to swims in the open ocean, where crocs ride the currents.

One croc, a roughly 15-foot- long male, traveled more than 400 kilometers in 20 days from the east coast of Cape York Peninsula through the Torres Straits to the west coast of Cape York, according to the study. At one point, the croc stopped on the shore of the Torres Straits and stayed there for four days waiting for more ideal currents.

Campbell explains that this type of behavior, “not only helps to explains how estuarine crocodiles move between oceanic islands, but also contributes to the theory that crocodilians have crossed major marine barriers during their evolutionary past.”

The full paper is available in the British Ecological Society’s Journal of Animal Ecology.


%d bloggers like this: